

ETHER: A Sustainable 3D Architecture

Dr. Joan A. Ruiz-de-Azúa, I2CAT Foundation Dr. Agapi Mesodiakaki, Aristotle University of Thessaloniki

NTN Workshop Online, 07/11/2024

www.ether-project.eu

0

ETHER Vision, Use Cases, and KPIs

ETHER Vision

Higher-level technological enablers

Lower-level technological enablers

ETHER Use Case 1: Service Provision to Delay-Tolerant IoT Applications

Assumptions:

- □ Feeder-link discontinuity
- Satellites with store-and-forward capability
- Delay-tolerant IoT applications

Key ETHER Innovations:

- Horizontal handovers
- ETHER MANO
- Flexible payloads
- Semantics-aware information handling efficiency

KPIs:

> 75 % higher energy efficiency leveraging semantics-aware information handling combined with edge computing and caching

ETHER Use Case 2: Broadband Direct Handheld Device Access at the Ka Band

Assumptions:

- Communication with a terrestrial small cell infeasible either due to lack of infrastructure (remote/rural areas) or bad link/high cell traffic
- Broadband communication required for the handheld device

Key ETHER Innovations:

- Distributed beamforming from LEO-satellite swarms
- Vertical handovers across RATs
- Unified waveform design
- Terminal antenna design

KPIs:

100% coverage

>70% more energy-efficient vertical handover w.r.t SOTA

ETHER Use Case 3: Air-Space Safety Critical Operations

Assumptions:

6

- Aircraft moving from one airport to another
- Flight coverage via only terrestrial stations imposible throughput plane's trajectory

Key ETHER Innovations:

- Vertical handovers across RATs
- ETHER MEC orchestrator
- Unified waveform design
- Predictive analytics
- E2E network performance optimization algorithms

ground networ Air-toground

etwor

KPIs:

- □ 100% coverage
- □ Performance integrity 10⁻⁴ to 10⁻⁶
- □ >80% more energy efficient resource allocation w.r.t. SOTA

0

atellite & HPAS to

யிய

ETHER NTN Mobility Management

ETHER MANO Architecture (I) Architecture

(1) Global Level

- E2E components
- E2E Application Orchestrator
- E2E Network Orchestrator

(2) Administrative Domain Level

- Multiples domains integrated
- Domain per layer (e.g., aerial)
- Domain per scope (e.g., RAN)

(3) Infrastructure and AI layers

• Presented in other sections

Domain-specific per scope

- Specific orchestrator per domain
- Connection between orchestrators
- Dedicated infrastructure

Supplementary functions

Complement orchestration (e.g., AI modules)

ETHER MANO Architecture (II)

Challenges & Approach

Challenge #1: Execution on geographical location

- Current technologies do not differentiate between countries
- Deployments done by different clouds domains

- Current technologies do not integrate mobile infrastructure
- Predictive mechanisms may help to anticipate changes
- Seamless integration with current architectures

Multiple implications (e.g., legal aspects, etc.)

ETHER MANO Architecture (III) Mobility Management

Global Mobility Management Function (GMMF)

- Primary point of contact the mobility management framework
- Registering and discovering available domains **Domain MMF (DMMF)**
- Identifying the domains that the physical infrastructure traverses within the target area
- Managing LMMFs

Local MMF (LMMF)

- Managing the mobility of physical infrastructure
- Discovery of the location of physical infrastructure
- Maintenance and update of node location

3GPP management plane stack interconnected hierarchically with the ETHER xMMF stack

Implementation of Mobility and Geolocalization Management

Problem:

- Dynamic and resource-constrained
 infrastructure
- SDN-based solutions overlooking of infrastructure geolocation
- Ad-hoc satellite operations solutions

Proposed Innovation:

 Integration of Geographical Information System (GIS) and mobility manager into standardized MANO framework

Design of Geolocalization Management

GIS Function

- Storage and query of spatial information
- Management of target areas, and visualization of satellite infrastructure
- Integration with external GIS

GIS Backend

- Data storage and querying.
- Spatial data processing and management.
- GIS server engine for publishing data in various formats.

GIS Frontend

- User Interface
- Visualization
- Target Area Selection

Design of Mobility Management

Satellite Mobility Manager to obtain (or propagate) the position of satellite nodes and implement changes in services based on this position.

- Dynamic VNF Scaling
- Distance-based migration
- Propagated position
- Dynamic reconfiguration

Preliminary results

- From OSM GIS plugin we selected the target area.
- The channel emulator propagates the orbit
- Custom scalers activate the service
- Relay service enables connection

Time

0

A Sustainable ETHER Architecture

ETHER Techno-economic analysis and architecture evaluation Employed models

- Channel modelling (SINR, EIRP, C/N_o, Path Loss)
- Path Loss (Link distance) [ITU-R P.618-13]
 - Rain attenuation [ITU-R P.837, P. 838-3]
 - Gas attenuation [ITU-R P.835-6, P.676-13]
 - Fog attenuation [ITU-R P.840-9]
 - Scintillation attenuation [ITU-R P.453-14]
- Metrics
 - Spectral Efficiency (bps/Hz)
 - Maximum capacity (bps)
 - Energy efficiency (EE) (**bits/J**)
 - Cost efficiency (CE) (bps/EUR/year)

$$EE = \frac{Data \ rate}{Power \ Consumption} \left[\frac{bps}{W}\right] = \left[\frac{bits}{J}\right]$$

ETHER Techno-economic analysis of different BSs (1/5) Different types of HAPS and UAVs

Aerostatic balloons

Airships (aerostatic)

Aerodynamic fixed-wing

UAVs with rotary wing

UAVs with fixed wing

Fixed-wing hybrid UAVs

ETHER Techno-economic analysis of different BSs (2/5) Comparison of different BS types [1], [2]

	Terrestrial BSs	Fixed-Wing UAVs	Hybrid UAVs	Aerostatic HAPS	Aerodynamic HAPS	Satelllites
Height	0-0.3 km	1-10 km	1-10 km	18-22 km	18-22 km	300-35786 km
Fllight duration	N/A	6-12 hours	6-12 hours	5-10 y (airships)	6-12 months	LEO: 5-10 years [3] GEO: 15-30 years [4]
Autonomy	No	No	No	Yes	Yes	Yes
Max. coverage (radius)	Up to 1-2 km	Up to 10 km	Up to 10 km	Up to 500 km per platform [5]	Up to 50 km per platform [6]	LEO: up to 5400 km GEO: up to 8400 km (~1/3 of Earth's surface)
Cell radius [7]	0.1-1 km	0.1-5 km	0.1-5 km	>10 km	>10 km	LEO : 25 km GEO: >200 km
Two-way delay	<<1 ms	<1 ms	<1 ms	<10 ms	<10 ms	LEO : <40 ms GEO: 238-278 ms
Payload	N/A	5-15 kg	~10 kg	<500 kg	5-20 kg [8]	Avg. weight: LEO : ~500 kg [9] GEO : 1000-6500 kg [10], [11]
TCO per BS (EUR/year)[9]	gNB : 168k [12], [13] SC : 30k [14]	200k [15], [16]	N/A	500k (airship) [13], [17]	1m-2m [18]	LEO: 155k [19], MEO: 4.15M [20], GEO: 7.9M [21]

ETHER Techno-economic analysis of different BSs (3/5) Different Scenarios

• Matlab

ETHER Techno-economic analysis of different BSs (4/5) Simulation results – Capacity-driven scenario

- gNBs (3.5 GHz) → require the min. number of BSs due to high capacity per gNB
- Higher frequencies → higher capacity
 ✓ High gains compensate for the higher path loss
 ✓ High BW → High SE
- Best choice → Terrestrial BSs involve the lowest TCO
- Densification of densely populated areas with SCs (involve the lowest TCO)

ETHER Techno-economic analysis of different BSs (5/5) Simulation results – Coverage-driven scenario

- LEOs \rightarrow only 1 is sufficient
- HAPS \rightarrow only 1 for large areas up to 70 km²
- Aerial and space BSs → higher coverage due to their altitude
- Higher frequencies \rightarrow lower coverage

- Best choice (lowest TCO) → LEOs (28 GHz)
- 2nd best choice → HAPS (2.1 GHz)
- Hybrid TN-NTN solutions are expected for sustainable 6G networks!

ETHER architecture evaluation (1/2) Simulation scenario

- Matlab
- <u>Proposed</u>: user association & traffic routing (min. power), xNF placement (centrality, computational capacity, CPU load)
- **SotA**: xNF placement (centrality) and then traffic routing (min. delay)

	SFC Type	Rate (Mbps)	Latency (ms)	Share (%)
	Web	0.6-1	500	15
	VoIP	0.384-0.64	100	15
UC2-	Streaming	5-24	100	30
	Gaming	0.24-0.5	60	10
	Ultra RT AI/ML	15-25	1	10
UC1	IoT Applications	0.1-0.5	400	10
UC3	TT&C Applications	1-5	250	10

ETHER architecture evaluation (2/2) Results – Energy efficiency (EE) and Total Cost of Ownership (TCO)

- Proposed
 - ✓ Up to 82% higher EE (low traffic)
 - ✓ Higher flexibility but slightly higher complexity
 - Up to 94% lower TCO (high traffic)
 - ✓ Fewer PMs & BSs → less OPEX & CAPEX

- Both algorithms → 100% user acceptance ratio
- ETHER 3D architecture achieves very high energy- and cost-efficiency performance!

0

Conclusions

Main takeaways

- ETHER architecture has been defined with the required features
- MANO adaptation has been proposed and addressed
- Current results demonstrate that the first prototype allows the satellite-based NTN orchestration
- Further developments are still on-going
 - Multi-satellite scenario to manage service migration
 - Multi-service provision and dynamic reconfiguration
 - o Standardization activities
- Capacity-driven scenarios will rely mainly on terrestrial means.
- Coverage-driven scenarios will rely mainly on non-terrestrial means.

✓ Hybrid TN-NTN solutions are expected for sustainable 6G networks!

• ETHER 3D architecture achieves very high energy- and cost-efficiency performance!

ETHOR

Thanks

joan.ruizdeazua@i2cat.net amesodia@csd.auth.gr

ether-project.eu

@ETHER_eu

@etherprojecteu

Co-funded by the European Union

ETHER project has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101096526

im